Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 690-705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727252

RESUMO

To help understand the complex and therapeutically challenging inflammatory bowel diseases (IBDs), we developed a systems biology model of the intestinal immune system that is able to describe main aspects of IBD and different treatment modalities thereof. The model, including key cell types and processes of the mucosal immune response, compiles a large amount of isolated experimental findings from literature into a larger context and allows for simulations of different inflammation scenarios based on the underlying data and assumptions. In the context of a large and diverse virtual IBD population, we characterized the patients based on their phenotype (in contrast to healthy individuals, they developed persistent inflammation after a trigger event) rather than on a priori assumptions on parameter differences to a healthy individual. This allowed to reproduce the enormous diversity of predispositions known to lead to IBD. Analyzing different treatment effects, the model provides insight into characteristics of individual drug therapy. We illustrate for anti-TNF-α therapy, how the model can be used (i) to decide for alternative treatments with best prospects in the case of nonresponse, and (ii) to identify promising combination therapies with other available treatment options.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores do Fator de Necrose Tumoral , Humanos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Biologia de Sistemas , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos , Inflamação
2.
J Biol Chem ; 294(19): 7740-7754, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30914481

RESUMO

An efficient immunosurveillance of CD8+ T cells in the periphery depends on positive/negative selection of thymocytes and thus on the dynamics of antigen degradation and epitope production by thymoproteasome and immunoproteasome in the thymus. Although studies in mouse systems have shown how thymoproteasome activity differs from that of immunoproteasome and strongly impacts the T cell repertoire, the proteolytic dynamics and the regulation of human thymoproteasome are unknown. By combining biochemical and computational modeling approaches, we show here that human 20S thymoproteasome and immunoproteasome differ not only in the proteolytic activity of the catalytic sites but also in the peptide transport. These differences impinge upon the quantity of peptide products rather than where the substrates are cleaved. The comparison of the two human 20S proteasome isoforms depicts different processing of antigens that are associated to tumors and autoimmune diseases.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/enzimologia , Simulação por Computador , Complexo de Endopeptidases do Proteassoma/química , Células A549 , Animais , Linfócitos T CD8-Positivos/imunologia , Catálise , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Células THP-1
3.
Regul Toxicol Pharmacol ; 88: 310-321, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28237896

RESUMO

As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously re-evaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment.


Assuntos
Alumínio/farmacocinética , Alumínio/toxicidade , Adjuvantes Imunológicos/farmacocinética , Adjuvantes Imunológicos/toxicidade , Humanos , Toxicocinética , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...